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Energy optimized Gaussian basis sets have been derived for the atoms T1-Rn. 
Two sets are presented - a (20, 16, 10, 6) set and a (22, 17 13 8) set. The smallest 
sets yield atomic energies 107 to 123 mH above the numerical Hartree-Fock 
values, while the larger sets give energies 11 mH above the numerical results. 
Energy trends fi'om the smaller sets indicate that reduced shielding by p- 
electrons may place a greater demand on the flexibility of d- and f-orbital 
description for the lighter elements of the series. 
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1. Introduction 

The Gaussian type orbital (GTO), first introduced in quantum chemistry by Boys 
[1], is today the preferred type of basis function for the overwhelming majority 
of LCAO-MO calculations. The shortcomings of this type of function in the 
representation of atomic orbitals, are more than compensated for by its behavior 
in the evaluation of two-electron integrals - one of the heaviest computational 
tasks in this type of calculation [2-6]. 

During the last decade GTO basis sets have been derived for most of the elements 
of the periodic table, and although the quality may vary somewhat, it is usually 
possible to find a high-quality basis set for most atoms [7-9]. An exception to 
this is the post-lanthanide main group elements T1-Rn. The only basis sets in the 
literature for these atoms [10] are contracted minimal basis sets with total energies 
more than 10 Hartrees above the numerical Hartree-Fock results of Froese- 
Fischer [11]. Although this is a small fraction of the total atomic energy, it is 
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very large compared to "normal"  chemical energies as manifested in binding 
energies and activation energies. 

With the present advances in supercomputer technology there is no reason why 
this corner of the periodic table should not be accessible to high-quality LCAO- 
MO ab initio calculations. One objection might be that the relativistic effects play 
a large role for this group of elements [12-18] and the relativistic energy lowering 
is almost two orders of magnitude larger than the basis set error referred above. 
However, for most relativistic molecular calculations it will be of interest to have 
high-quality non-relativistic calculations available for comparison. Also, a number 
of groups have successfully used first order perturbation theory to estimate 
relativistic energy corrections from a non-relativistic wavefunction [18-20]. 
Finally, the basis sets suggested here are so flexible that good results may be 
expected also in applications using approximate one-component relativistic 
schemes [21-24]. 

On this background, the development of high-quality basis sets for the atoms 
T1-Rn has been undertaken. The computational technique and strategy employed 
are briefly summarised below, followed by a discussion of the properties of the 
two series of basis sets developed in full. One set contains 20 s-orbitals, 16 
p-orbitals, 10 d-orbitals, and 16 f-orbitals, denoted (20, 16, 10, 6), the other is a 
(22, 17, 13, 8) set. 

2. Computational details and results 

The investigation reported here was carried out using computer programs 
described previously [25]. These programs use a scaled Newton-Raphson 
algorithm in the search for a minimum on the energy hypersurface. The Hessian 
required for these calculations is obtained either analytically (closed shells) or 
numerically (open shells). 

As a first step a number of basis sets of varying size were optimized for Rn. Some 
results of this variation are presented in Table 1 which shows how the total atomic 

Table 1. Variation of total energy with basis set size for the ground state 
of  Rn. AE is deviation from the numeric Hartree-Fock result of 
-21866.772 H (Ref. [11]) 

Basis set AE (H) Basis set AE (H) 

s-variation d-variation 
23, 18, 10, 7 0.067 21, 17, 13, 7 0.019 
22, 18, 10, 7 0.068 21, 17, 12, 7 0.022 
21, 18, 10,7 0.070 21, 17, 11,7 0.022 
20, 18, 10, 7 0.076 21, 17, 10, 7 0.073 

p -variation f-variation 
21, 19, 10, 7 0.067 a 23, 18, 10, 8 0.062 
21, 18, 10, 7 0.070 23, 18, 10, 7 0.067 
21, 17, 10, 7 0.073 23, 18, 10, 6 0.092 
21, 16, 10, 7 0.079 23, 18, 10, 5 0.213 

a Estimated from unpublished calculations on Pb 
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energy depends on basis set size. On the basis of  this it is possible to choose a set 
conforming to specified criteria. One obvious criterion is the total energy, which 
should be as low as possible with the minimum number  of  basis functions. Two 
basis sets for comparable atoms are Huzinaga's  (16, 12, 8) set for Xe [26], and 
the Yb (21, 15, 10, 81) set of  van Piggelen et al. [27] - these sets yield total atomic 
energies respectively 0.143 and 0.019 H above the numerical results of  Froese- 
Fischer [11]. By comparison, the total energies of  the Wachters '  (14, 9, 5) basis 
sets for Sc and Zn are respectively 0.014 H and 0.089 H above the numerical results. 

Another criterion which may be applied to basis set selection is that of  energy- 
balance. The description of orbitals of different symmetry should be of approxi- 
mately the same quality. In practice this means that adding one basis function 
to the set should give the same lowering of the total energy regardless of which 
symmetry the function belongs to. For basis sets in the range presented in Table 
1 the total energy is strongly dependent on the number  of  functions used to 
describe d- andf-orbi ta ls .  This is unfortunate - basis functions with high angular 
momentum quantum numbers generally lead to longer integral evaluation times, 
and it is therefore desirable to keep the number  of  such functions low. Their 
energetic importance is due partly to the large number  of  electrons in d- and 
f-shells,  and for cases where these would not be expected to be chemically active, 
d- and f-shells  may possibly be described with less accuracy than the rest of  the 
atom. However, these are high-lying shells, and the possibility of  introducing a 
superposition error should be considered. 

One would also like to ensure a certain minimum of flexibility in the wavefunction. 
A normal requirement is to demand at least a double zeta description of the 
valence orbitals [29]. The possible effects of  multiple minima on the energy 
hypersurface in this connection has been discussed elsewhere [30]. 

On the basis of  such criteria and the data in Table 1, two sets of  GTO basis 
functions have been derived for the atoms T1-Rn. The smallest of these - 
(20, 16, 10, 6) - is slightly unbalanced in the sense that the d- and f-shells are 
not as accurately described as s- and p-shells. Thus, the addition of one more 
d-function leads to an energy lowering of 39 mH, an f - funct ion yields 24 mH, 
whereas s- and p-orbitals would only contribute 6 mH. Comparing total atomic 
energies to the numerical results of Froese-Fischer [11] (Table 2) it is seen that 
the accuracy of this set is slightly poorer than Wachters '  transition metal sets 
[28]. The large set -- (22, 17, 13, 8) - is reasonably well-balanced and produces 
total atomic energies only 11 m H  above the numerical reults. An increase of basis 
set size beyond this should probably concentrate on the addition of polarization 
functions which may be of greater importance for molecular applications than 
a further refinement of  the description of the atom. 

There is a slight difference in the convergence criteria used for the optimizations 
of the two sets. Optimization is carried out in the space of the logarithm of the 
orbital exponents as described previously [3]. While the smaller sets have been 
optimized to the stage where all gradient in this space are smaller than 10 -5 , the 
large sets have only been optimized on the basis of  a stable energy. Consequently 
some of the more diffuse orbitals may have gradient components of magnitude 
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Table 2. Total ground state energies for the atoms T1-Rn obtained with (20, 16, 10, 6) 
and (22, 17, 13, 8) basis sets. AE is the deviation from the numeric Hartree-Fock values 
of Froese-Fischer (Ref. [11]). All energy values are in Hartrees 

K. Faegri, Jr. 

(20,16,10,6) (22,17,13,8) 

Atom - E  (GTO) ~E  - E  (GTO) ~E  

T1 18961.70248 0.123 18961.81431 0.011 
Pb 19523.89055 0.117 19523.99779 0.011 
Bi 20095.47266 0.113 20095.57636 0.010 
At 20676.38980 0.111 20676.49061 0.011 
Po 21266.77260 0.109 21266.87119 0.011 
Rn 21866.66467 0.107 21866.76154 0.011 

1 0 - 3 - 1 0  -4 .  Thus, if the criterion used by Mezey and co-workers [31-33] is applied, 
the large sets may be regarded as somewhat unbalanced. This is not expected to 
have any great effects on the quality of the wavefunction. 

One interesting feature of Table 2 is the gradual improvement in total energy 
relative to the numerical results for the (20, 16, 10, 6) sets as the atomic number 
increases. This is contrary to previous experience with the transition metal basis 
sets where the increasing number of d-electrons leads to a poorer energy value 
as one moves from Sc to Zn without increasing the number of d-orbitals in the 
basis set [28, 30]. This effect may be further analyzed by considering the energy 
changes obtained using basis sets derived by substituting the functions of one 
symmetry from the (22, 17, 13, 8) set into the (20, 16, 10, 6) set to get (22, 16, 10, 6) 
sets etc. The results from calculations using such basis sets for T1 and Rn are 
presented in Table 3. The difference in energy when increasing the s- or p-orbital 
basis is rather small, and in the expected direction - most important for the 
heaviest atom. With the relatively large s and p basis sets, this is not surprising. 
Increasing the d- and f-orbital sets, however, gives considerably larger energy 
shifts for the ligher elements. Considering that the number of d- and f-shell  
electrons is the same for T1 and Rn, the nature of this differential energy shift 
must differ from that of the first-row transition metals where the increase in 
number of d-electrons requires a better d-orbital description for heavy elements 

Table 3. Energy changes relative to total atomic energy obtained with 
(20, 16, 10, 6) set for T1 and Rn using derived basis sets and the optimized 
(22, 17, 13, 8) set. All energies in mH 

Basis set AE (T1) b E  (Rn) AE (T1)-AE (Rn) 

20, 16, 10, 6 0.00 0.00 0.00 
22, 16, 10, 6 6.95 7.42 -0.47 
20, 17, 10, 6 3.90 4.58 -0.68 
20, 16, 13, 6 66.54 55.06 11.48 
20, 16, 10, 8 33.67 29.78 3.89 
22, 17, 13, 8 111.83 96.87 14.96 
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to maintain the same accuracy as for the light ones. Inspection of orbital energies 
shows that the difference between the (20, 16, 10, 6) and (22, 17, 13, 8) basis values 
for T1 is 15, 14, and 9 mH for 3d, 4d, and 5d respectively, while the corresponding 
numbers for Rn are 9, 8, and 6 mH. One possible explanation for this may be 
that the reduced screening effect of the p-electrons in T1 as compared to Rn 
places a greater demand on the flexibility in the d-basis. 

No attempts have been made to investigate possible contraction schemes for 
these basis sets. As they stand they may either be used uncontracted, or with a 
general Raffenetti type contraction [34]. The use of a segmented contraction for 
these basis sets is probably unwise, as this may destroy important features of the 
nodal structure of 12 and M shell orbitals. 

A copy of the basis sets may be obtained from the author on request. 
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